OLS/Source/OLSAnimation/Private/Libraries/OLSLocomotionBPLibrary.cpp

328 lines
12 KiB
C++
Raw Normal View History

2024-09-22 21:11:19 +00:00
// © 2024 Long Ly. All rights reserved. Any unauthorized use, reproduction, or distribution of this trademark is strictly prohibited and may result in legal action.
#include "Libraries/OLSLocomotionBPLibrary.h"
#include "SequencePlayerLibrary.h"
#include "Animation/AnimCurveCompressionCodec_UniformIndexable.h"
#include "Animation/AnimNode_SequencePlayer.h"
#include "AnimNodes/AnimNode_SequenceEvaluator.h"
DEFINE_LOG_CATEGORY_STATIC(LogOLSLocomotionLibrary, Verbose, All);
float UOLSLocomotionBPLibrary::GetDistanceCurveValueAtTime(const UAnimSequenceBase* animSequence,
const float time,
const FName& curveName)
{
FAnimCurveBufferAccess bufferCurveAccess(animSequence, curveName);
if (bufferCurveAccess.IsValid())
{
const float clampedTime = FMath::Clamp(time, 0.f, animSequence->GetPlayLength());
if (animSequence->GetNumberOfSampledKeys() > 2)
{
return animSequence->EvaluateCurveData(curveName, clampedTime);
}
}
return 0.f;
}
float UOLSLocomotionBPLibrary::GetTimeAtDistance(const UAnimSequenceBase* animSequence,
const float& distance, FName curveName)
{
FAnimCurveBufferAccess bufferCurveAccess(animSequence, curveName);
if (bufferCurveAccess.IsValid())
{
const int32 numKeys = bufferCurveAccess.GetNumSamples();
if (numKeys < 2)
{
return 0.f;
}
int32 first = 1;
int32 last = numKeys - 1;
int32 count = last - first;
while (count > 0)
{
int32 step = count / 2;
int32 middle = first + step;
if (distance > bufferCurveAccess.GetValue(middle))
{
first = middle + 1;
count -= step + 1;
}
else
{
count = step;
}
}
const float keyAValue = bufferCurveAccess.GetValue(first - 1);
const float keyBValue = bufferCurveAccess.GetValue(first);
const float diff = keyBValue - keyAValue;
const float alpha = !FMath::IsNearlyZero(diff) ? ((distance - keyAValue) / diff) : 0.f;
const float keyATime = bufferCurveAccess.GetTime(first - 1);
const float keyBTime = bufferCurveAccess.GetTime(first);
return FMath::Lerp(keyATime, keyBTime, alpha);
}
return 0.f;
}
FSequenceEvaluatorReference UOLSLocomotionBPLibrary::DistanceMatchToTarget(const FAnimUpdateContext& updateContext,
const FSequenceEvaluatorReference&
sequenceEvaluator,
float distanceToTarget,
bool shouldDistanceMatchStop,
float stopDistanceThreshHold,
float animEndTime,
FName curveName)
{
sequenceEvaluator.CallAnimNodeFunction<FAnimNode_SequenceEvaluator>(
TEXT("DistanceMatchToTarget"),
[updateContext,sequenceEvaluator,distanceToTarget, shouldDistanceMatchStop,stopDistanceThreshHold,animEndTime,
curveName](
FAnimNode_SequenceEvaluator& InSequenceEvaluator)
{
if (const UAnimSequenceBase* animSequence = InSequenceEvaluator.GetSequence())
{
if (GetDistanceCurveValueAtTime(animSequence,
USequenceEvaluatorLibrary::GetAccumulatedTime(sequenceEvaluator),
curveName) > stopDistanceThreshHold && !shouldDistanceMatchStop)
{
const float newTime = GetTimeAtDistance(animSequence, -distanceToTarget, curveName);
if (!InSequenceEvaluator.SetExplicitTime(newTime))
{
UE_LOG(LogOLSLocomotionLibrary, Warning,
TEXT(
"Could not set explicit time on sequence evaluator, value is not dynamic. Set it as Always Dynamic."
));
}
}
else
{
USequenceEvaluatorLibrary::AdvanceTime(updateContext, sequenceEvaluator, 1.0f);
if (animEndTime > 0)
{
const float desiredTime = FMath::Clamp(
USequenceEvaluatorLibrary::GetAccumulatedTime(sequenceEvaluator), 0, animEndTime);
USequenceEvaluatorLibrary::SetExplicitTime(sequenceEvaluator, desiredTime);
}
}
}
else
{
UE_LOG(LogOLSLocomotionLibrary, Warning,
TEXT("Sequence evaluator does not have an anim sequence to play."));
}
});
return sequenceEvaluator;
}
FSequencePlayerReference UOLSLocomotionBPLibrary::SetPlayRateToMatchSpeed(const FSequencePlayerReference& sequencePlayer,
float speedToMatch,
FVector2D playRateClamp)
{
sequencePlayer.CallAnimNodeFunction<FAnimNode_SequencePlayer>(
TEXT("SetPlayrateToMatchSpeed"),
[speedToMatch, playRateClamp](FAnimNode_SequencePlayer& sequencePlayer)
{
if (const UAnimSequence* animSequence = Cast<UAnimSequence>(sequencePlayer.GetSequence()))
{
const float animLength = animSequence->GetPlayLength();
if (!FMath::IsNearlyZero(animLength))
{
// Calculate the speed as: (distance traveled by the animation) / (length of the animation)
const FVector rootMotionTranslation = animSequence->ExtractRootMotionFromRange(0.0f, animLength).
GetTranslation();
const float rootMotionDistance = rootMotionTranslation.Size2D();
if (!FMath::IsNearlyZero(rootMotionDistance))
{
const float animationSpeed = rootMotionDistance / animLength;
float desiredPlayRate = speedToMatch / animationSpeed;
if (playRateClamp.X >= 0.0f && playRateClamp.X < playRateClamp.Y)
{
desiredPlayRate = FMath::Clamp(desiredPlayRate, playRateClamp.X, playRateClamp.Y);
}
if (!sequencePlayer.SetPlayRate(desiredPlayRate))
{
UE_LOG(LogOLSLocomotionLibrary, Warning,
TEXT(
"Could not set play rate on sequence player, value is not dynamic. Set it as Always Dynamic."
));
}
}
else
{
UE_LOG(LogOLSLocomotionLibrary, Warning,
TEXT("Unable to adjust playrate for animation with no root motion delta (%s)."),
*GetNameSafe(animSequence));
}
}
else
{
UE_LOG(LogOLSLocomotionLibrary, Warning,
TEXT("Unable to adjust playrate for zero length animation (%s)."),
*GetNameSafe(animSequence));
}
}
else
{
UE_LOG(LogOLSLocomotionLibrary, Warning,
TEXT("Sequence player does not have an anim sequence to play."));
}
});
return sequencePlayer;
}
2024-09-22 21:11:19 +00:00
FVector UOLSLocomotionBPLibrary::PredictGroundMovementStopLocation(const FVector& velocity,
bool shouldUseSeparateBrakingFriction,
float brakingFriction, float groundFriction,
float brakingFrictionFactor,
float brakingDecelerationWalking)
{
FVector predictedStopLocation = FVector::ZeroVector;
// Determine the actual braking friction
float actualBrakingFriction = shouldUseSeparateBrakingFriction ? brakingFriction : groundFriction;
actualBrakingFriction = FMath::Max(0.f, actualBrakingFriction * FMath::Max(0.f, brakingFrictionFactor));
// Calculate 2D velocity and speed
const FVector velocity2D = FVector(velocity.X, velocity.Y, 0.f);
const float speed2D = velocity2D.Size();
// Check if there's movement to stop
if (speed2D > 0.f)
{
// Calculate braking divisor
const float divisor = actualBrakingFriction * speed2D + FMath::Max(0.f, brakingDecelerationWalking);
// Check if stopping is possible
if (divisor > 0.f)
{
// Calculate time to stop
const float timeToStop = speed2D / divisor;
// Calculate predicted stop location
predictedStopLocation = velocity2D * timeToStop + 0.5f * ((-actualBrakingFriction) * velocity2D -
brakingDecelerationWalking * velocity2D.GetSafeNormal()) * FMath::Square(timeToStop);
}
}
return predictedStopLocation;
}
FVector UOLSLocomotionBPLibrary::PredictGroundMovementPivotLocation(const FVector& acceleration,
const FVector& velocity, float groundFriction)
{
FVector predictedPivotLocation = FVector::ZeroVector;
const FVector acceleration2D = acceleration * FVector(1.f, 1.f, 0.f);
const float accelerationSize2D = acceleration2D.Size();
// Check if velocity is along the opposite direction of acceleration
if ((velocity | acceleration2D) < 0.0f)
{
const float speedAlongAcceleration = -(velocity | acceleration2D);
const float divisor = accelerationSize2D + 2.f * speedAlongAcceleration * groundFriction;
// Check if stopping is possible
if (divisor > 0.f)
{
const float timeToDirectionChange = speedAlongAcceleration / divisor;
// Calculate the acceleration force
const FVector accelerationForce = acceleration - (velocity - acceleration2D * velocity.Size2D()) * groundFriction;
// Calculate the predicted pivot location
predictedPivotLocation = velocity * timeToDirectionChange + 0.5f * accelerationForce * timeToDirectionChange * timeToDirectionChange;
}
}
return predictedPivotLocation;
}
EOLSCardinalDirection UOLSLocomotionBPLibrary::SelectCardinalDirectionFromAngle(float angle,
float deadZone,
EOLSCardinalDirection currentDirection,
bool useCurrentDirection /* = false */)
{
const float absAngle = FMath::Abs(angle);
float fwdDeadZone = deadZone;
float bwdDeadZone = deadZone;
if (useCurrentDirection)
{
if (currentDirection == EOLSCardinalDirection::EForward)
{
fwdDeadZone *= 2.f;
}
else if (currentDirection == EOLSCardinalDirection::EBackward)
{
bwdDeadZone *= 2.f;
}
}
if(absAngle <= (45 + fwdDeadZone))
{
return EOLSCardinalDirection::EForward;
}
else if (absAngle >= (135 - bwdDeadZone))
{
return EOLSCardinalDirection::EBackward;
}
else if (angle > 0)
{
return EOLSCardinalDirection::ERight;
}
return EOLSCardinalDirection::ELeft;
}
EOLSCardinalDirection UOLSLocomotionBPLibrary::GetOppositeCardinalDirectional(EOLSCardinalDirection currentDirection)
{
switch (currentDirection)
{
case EOLSCardinalDirection::EForward: {return EOLSCardinalDirection::EBackward;}
case EOLSCardinalDirection::EBackward: {return EOLSCardinalDirection::EForward;}
case EOLSCardinalDirection::ELeft: {return EOLSCardinalDirection::ERight;}
case EOLSCardinalDirection::ERight: {return EOLSCardinalDirection::ELeft;}
}
return EOLSCardinalDirection::EForward;
}
EOLSHipDirection UOLSLocomotionBPLibrary::GetOppositeHipDirection(EOLSHipDirection currentHipDirection)
{
return (currentHipDirection == EOLSHipDirection::EForward ? EOLSHipDirection::EBackward : EOLSHipDirection::EForward);
}
void UOLSLocomotionBPLibrary::TryLinkAnimLayer(USkeletalMeshComponent* mesh,
TSubclassOf<UAnimInstance> animClass,
FName groupName,
bool shouldUnlinkGroupIfInvalid)
{
if (!animClass->IsValidLowLevelFast())
{
if (shouldUnlinkGroupIfInvalid)
{
if (const TObjectPtr<UAnimInstance> linkedAnimInstance = mesh->GetLinkedAnimLayerInstanceByGroup(groupName))
{
mesh->UnlinkAnimClassLayers(linkedAnimInstance.GetClass());
}
}
return;
}
mesh->LinkAnimClassLayers(animClass);
}